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Abstract-- The exact solutions for stability analysis of bars with varying cross sections subjected to
simple or complicated loads. including concentrated and variably distributed axial loads are pre
sented in this paper. The distribution of flexural stiffness of the bar and that of axial loads acting
on the bar are expressed as power functions or exponential functions; also, the extracted exact
solutions are expressed in terms of Bessel functions and super geometric series.

INTRODUCTION

As is well known, the model for stability analysis of high-rise structures, tall buildings and
trusses can be treated as a uniform bar or a non-uniform bar subjected to concentrated and
variably distributed axial loads. The exact solutions of such bars have not previously been
proposed in the stability analysis literature. The simple cases, such as a bar of varying cross
sections subjected to concentrated axial loads at its top or ends, a uniform bar subjected to
uniformly distributed axial loads, or a cuneiform bar carrying its own weight, were studied
by Timoshenko (1930), Genik (1950), Jasinsky (1902), Karman and Biot (1940), The more
complicated cases, such as buckling of columns under variably distributed axial loads, were
discussed by Vaziri and Xie (1992), Arbabi and Li (1991). A new numerical model (Vaziri
and Xie, 1992) and new method of transforming an eigenvalue problem in a finite dimen
sional subspace (Arbari and Li, 1991) were proposed by these researches, In this paper, the
exact solutions for stability analysis of bars with varying cross sections subjected to simple
or complicated loads, including concentrated and variably distributed axial loads, are found
by selecting the suitable expressions, such as power functions and exponential functions,
for the distribution of flexural stiffness of the bar and for axial loads acting on the bar. All
of the exact solutions are expressed in terms of Bessel functions and super geometric series.
As the selected expressions are suitable for describing the distribution of flexural stiffness
and axial loads of a large number of engineering structures, especially, high-rise structures
and tall buildings (Li Guiqing, 1985), the proposed method has practical significance for
stability analysis.

GEJ\iERAL DIFFERENTIAL EQUATION OF BENDING AXIS

When the axial force acting on a straight bar reaches its critical value, the straight
equilibrium form will not be stable, but equilibrium is possible. The general differential
equation of bending of a bar is derived as follows.

Consider the element dx at the position x. Since the element is in equilibrium and the
deformation state of the bar is small, the following equation can be derived from

'LF, = 0 (Fig. I)

as
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Fig. 1. Model

N.I"-(N+dN)(.I"+dy')~Q+(Q+dQ)= O.

Neglecting infinitesimal quantities of the second order and dividing every term by dx, one
obtains

(N.I"j' -Q' = O.

Similarly, from 'i.F, = 0 it is found that

N' + (Qy')' = -q.

(1)

(2)

Using the equation of moment of the force acting on the element, dx, about one point
one may derive

/''11' = Q.

Substitution of eqn (3) into eqn (I) gives

(N.I")' - M" = O.

The integral of eqn (4) results in

Ny' - A1' = CII'

Dividing every term of eqn (5) by N we have

, M' C II

Y - /Ii =N'

Substituting the moment-curvature relation in the derivative of eqn (6) one yields

d 2 M 1 dN dM N C II dN
- - + AI = 1" d v 'dx 2 N dx dx EJ v,

(3)

(4)

(5)

(6)

(7)

It can be seen from eqn (5) that ell = - JF = - Q when y' = O. This fact means that
C II is equal to the absolute value of shear force at the section, but it has a contrary sign.



Stability analysis of bars with varying cross-section

Fig. 2. General cases.

3219

STABILITY ANALYSIS OF NON-CNIFORM CANTILEVERS SUBJECTED TO
CONCENTRATED AND VARIABLY DISTRIBUTED AXIAL LOADS

It is evident that Co = 0 for cantilevers with the origin at free end (Fig. 2). In this case,
eqn (7) becomes

d 2 M I dN dM N
~- - - -~ -- + - M = O.
dx 2 N dx dx EJ

(8)

It is difficult to obtain the exact solutions for general cases, but it is possible to solve
them for special cases. It is obvious that the exact solutions are dependent on the distribution
of flexural stiffness of the bar and axial loads acting on the bar. In this paper, several
important cases are discussed.

Case 1. Expressions offiexural stillness and axial loads are exponentialfunctions

- 11-'
EJ(x) = cJ.e /

\
-h-

N(x) = ae / (9)

Let

Substituting eqn (9) into eqn (8) we deduce

d 2 M hdM a \II-h)~
--+--+-e / M=O.
dx2 I dx CJ.

(10)

b
V=--

b-f3 '
M = ('Z,

" 4aP),- =---
CJ.(f3-b)2 '

(II)

then eqn (10) becomes a Bessel equation of the vth order:

The general solution of eqn (10) can be written as

c.\ c.,
M(x) = e2I(CIJ,.(i,e~I)+C2 Y,(i.e 2t )],

where v is an integer and c = f3 -h.
The boundary conditions of the cantilever are

(12)

(13)
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Fig. 3. Special case I.

dM
---- = ° when x = 0,
dx '

M = 0, when x = 1.

Using these boundary conditions we lead to the following eigenvalue equation:

l, I (I.) Y, urn = l,(i))) Y,_ I (i.), v = integer,

(14)

(15)

(16)

in which

(17)

Solving eqn (16) we determine an infinite number of eigenvalues Ai(i = 1,2, ... ). Sub
stituting the minimum J. into eqn (II), we derive the critical value of G, and then, by way
of eqn (9), we obtain the critical axial loads.

The special cases can be found from the general solution as follows.

(I) When h = 0, f3 i= 0, N(x) = N(l) = Ph the general solution becomes that of a non
uniform cantilever subjected to a concentrated axial load at the top of the cantilever (Fig.
3).

In this case, l' = 0, eqn (12) becomes a Bessel equation of zero order, with eigenvalue
equation

(18)

(2) When f3 = 0. h i= 0, El(x) = Elo = constant, the general solution becomes that of
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a uniform cantilever subjected to concentrated and variably distributed axial loads (Fig.
4).

In the case, l' = I, eqn (12) is a Bessel equation of the first order. Its eigenvalue
equation is

(19)

(3) When b = f3 = 0, eqn (10) becomes a differential equation with constant
coefficients which represents the case of a uniform cantilever subjected to a concentrated
load at the top (Fig. 5).

If v is a non-integer, then the eigenvalue equation is

Case 2. Expressions offlexural stiffness and axial loads are power functions

EJ(x) = :x(l +IJx)". N(x) = a(1 +fJx)'.

Substituting egn (21) into egn (9) one obtains

d 2 M cl3 dM (/
-'-, - --- -. +(1 +13x)'hM = O.
dr I + p.\ d.\ :x

Let

1+,

( = 1+ Ih, M = (~Z;

then egn (22) becomes

(20)

(21 )

(22)

(23)
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where /lc = (/ y.{J',
Let

(24)

/I
1= '-

k'

e--h+2
k = ') ['

I +e I +c
2k e-h+2'

then. eqn (24) becomc~ a Bc~~el equation of the nh order. namely

d'/', I d/' (" [,'1)
~ -t- 1- Z = 0,

dl' I dl " I'!

When [' i~ an integer. the general ~olution of eqn (25) is

(25)

(26)

The boundary conditions. eqns (14) and (15). give the eigenvalue equation similar to
eqn ( 16) for [' = in teger. or similar to eq n (20) f()r [' = non-integer. where

(27)

It is necess,tr) to roint out that [' = :r. when h = c-j-2. So the general solution found
above does not hold in this case. But. it can be ~een that eqn (24) becomes an Euler
equation. If we let I = In;. then. eqn (24) is reduced to

d'/,
+4 /' = O.

dl'

in which

When /I < (I ~c)2. the general solution ofeqn (22) becomes

(28)

(29)

I

:\1(y) = C (1 -+- (h)

with eigenvalue equation

I·,
"I +C(I+{h)c--,iA,. (30)

When /I > (I -j- e)2. the general solution of eqn (22) takes the form

(31 )

I,

\f(y) =(1 +(iY) 2 :Ccos[, 4,ln(I+{)Y)]+C~sinkA,ln(I+/)Y)]]. (32)

and the C()IT<."l'nl1di'1'! ei;,reJ1\~llue ,'qlwtinn ma\ he written as follows:
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Fig. 11 CUlleiform har.

2" Al
I(J(" AI In 11) = I+C

in which

d=I+fil.

The special cases can be found from the general solution as follows:

(33)

(34)

(I) When c = O. h =I O. N(x) = NU) = PI' the general solution becomes that of the
structure shown in Fig. 3.

In this case. r = 1(2 -h). When h = 2. then r = Y.-. and the general solution mentioned
above does not hold true; but it is the special example of b = c+ 2. The equation and its
solution can be found by the use ofeqns (n)(33). if we let c = O.

(2) When b = O. c =I O. then E1(y) = EJ" = constant. and the general solution becomes
that of the case shown in Fig. 4.

In this case. r = (c+ I) (c+2).
(3) When c = h = O. the case shown in Fig. 5 is obtained.
(4) When h = ~- (I I). the general solution becomes that of a cuneiform bar shown in

Fig. 6.

STABILITY A:\ALYSIS OF ,\O,\·L"IIfORM BARS WITII OTHER SUPPORTS SUBJECTED
TO COI\CE'\TRATED AND VARIABLY DISTR1BUTFD AXIAL LOADS

In generaL C, is not equal to zero for non-uniform bars with other than cantilever
supports. So. the general solution consists of the complementary solution obtained above
and a particular solution. The complementary solution can be written in a unified form as

(35)

in which

T
I

= t' J, (I)

JI' r, (I). I' = integer
T, =

- (I' J ,(I). r = non-integer

and the parameters I. r arc defined by eqns (12) or (..:'4).

A particular solution for eqn (!O) can be found by the use of the complementary
solution. eqn (35). as follows:
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M*(x) =
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C,2nh/ I -,- I , (/)1---- I [J,Y,+',I-Y,J,-I-ll =1 (r+i)!,c= r! ,~o'

Cl)2nh/ 1 ~ (t)'.
- -,-,' --:-~r(-.-1-) L [J,J n I+J ,1, tl 2. qt:-I),

(- SIn I n I + 1- I)

u = non-integer.

(36)

Also, a particular solution for eqn (22) is

(37)

where IF: (.) is a super geometric series

(
1 c I:)

F: 1: 2k + 1. - 2k + 1. - 4

(
1 ) ( - c )' F(i+ 1) ( ~}

= r 2k + 1 r 2k + 1 I~I) -(. 1) (. c ) '-i-! . (38)
r 1+--+1 r 1--+1

2k 2k

By now, the solution of eqn (7) may be written as

(39)

in which

AJ*(x)
To(x) = C .

o

To does not relate to Co.
Considering the definition of C,. eqn (6). and the general solution, eqn (39), we derive

(40)

In order to obtain the eigenvalue equation. it is necessary to consider three boundary
conditions. As is well known. the boundary conditions of a pinned-pinned bar with variable
cross section are

y"(/) = o. y"(O) = O. Q(/) = Q(O). (41)

The substitution of the above conditions into eqns (39) and (40) furnishes three linear
equations. Setting the coefficients of C,. C l and C: equal to zero we deduce the eigenvalue
equation.

Three boundary conditions for a cantilever are also considered: these are

Y'(O) = O. 1'v1'(0) = O. M(/) = O. (42)

The method for a cantilever mentioned in the previous paragraph is simpler than that of
this paragraph.
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ADDITIONAL METHOD OF SPECIAL CASES

(1) Non-uniform cantilever subjected to a concentrated axial load at the top.
Of course, this problem is only a special case of the previous paragraph, which can be

solved by the method mentioned in that paragraph. There is an additional assumption for
the problem under consideration.

It is assumed that

(43)

There are three parameters in eqn (43), more than in eqn (9). So, this expression is
better for describing the distribution of the flexural stiffness of the bar.

If x = 0,1/2, and I are selected as control points, then

E172 - EloEl,
b = -- " -

El, 2 [El'"2 (Elo+ El,) - 2EloEl,]

I
ex=---b

Elli

f3
- I-bEl,
- In 'XE1,

Substituting eqn (43) into eqn (8), we produce

d
2 M (0. b)---:;- + Na e / +- M = 0.
dx''X

Let us put

/1\
t = e/.

Then eqn (45) becomes a Bessel equation

in which

,'X> 0)
1'2 = ~~--=b)NJ2 b < °

f32 '

The general solution of eqn (45) is

Ih Ih

{

Cll,(ae2i)+C21_/cae2l), l' = non-integer
l\1 (x) = 11\ lix

Cl,(ae 2l )+C2 Y/(ae 2l ), v = integer.

Using the boundary condition, eqn (15), we derive the eigenvalue equation

(44)

(45)

(46)

(47)

(48)
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or

where
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J,(k1u)[aJ, \(a)+L:J ,(a)] =J ,(k 1 a)fuJ,_\(a)+vJ,.(a)], v=non-integer (49)

J,(k,u)[aY, \(u)-1'Y,(u)] = Y,(k 1u)[aJ,_\(u)-vJ,(a)], v = integer (50)

(51 )

(2) Uniform cantilever subjected to a concentrated axial load at the top and variable
distributed axial loads (Fig. 4).

This problem is also a special case of the previous paragraph. There is an additional
assumption for the problem under consideration.

It is assumed that

N(x) = ae
h~
/+c. (52)

Let Co = 0. y' = ip, M = - EJip', then, eqn (5) becomes

(53)

where ip is the angle of cross-section rotation. Substituting eqn (52) into eqn (53) we obtain

dCip a(-h' c)-- + - e / + - ip = 0.
dt 2 EJ a

Letting

hs

t = e ~

eqn (54) becomes a Bessel's equation of 1'th order, i.e.

dip Idip (,0 1'2)
dt2 + t eft + /.' - tC ip = 0,

in which

(54)

(55)

(56)

• 0 4al2

/.- = --,
hCEJ

, 4( _c)/2

1" = ----
fJ 2 EJ '

a> 0) .
c<o

(57)

The general solution of eqn (54) takes the form:

h\- h,Y

ip(x) = C J,U e - 2/) + C2J,(A e - 27), v = non-integer (58)
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Fig:. 7. Bilr with stepwise variation in cross section.

M(x) = EJq/(x)

h /1\ In h\ h.\ hx

= EJ 2/ {C,[i.e 2tJ, ,(i.e :/)-I'J ,(i.e :i)]+C2[i.e 2tJ_,_,(Ae- 21)

hx

+vJ_,(Ae- 21)]}. (59)

The eigenvalue equation can be found as follows:

where

(61 )

When l' = integer. J , must be changed into Y,. and the coefficient v of J _, must be
shifted to -1'.

Example
To determine the critical axial force of a bar consisting of two segments and subjected

to an end concentrated load shown in Fig. 7. the eigenvalue equation can be found by using
the static method as follows

'Y.o
rq'Y.l/ l + rq'Y.ol, = ~.

'lo l

in which

(62)

!p
/--

\j EJ
(63)

Substituting egn (63) into eqn (62) and letting II = I: = lone yields

-

f,(PI Irgv 2'lo l I = v 2.

Sol\ing clJn (64) wc derive'lo l and the critical load as follows:

SAS 32-21-K

(64)
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Ci l = 0.7190//

Pnl = 0.1570EJW·

If the proposed method in this paper is used to solve the above problem, then the step
varying distribution of flexural stiffness must be changed to a continuously varying one. If
eqn (21) is used at first, the coefficients Ci, f3, b, c are found as

b = ~,Ci = EJ. f3 =
3
8f'

c = O.

The order of Bessel function l' can be determined as

I +c 2
r=-----=-.

c-b+2 3

By solving the eigenvalue equation (20), one obtains

The results calculated above show that Per2 obtained by the proposed method is very
close to Perl, that is to the theoretical value achieved by the static method.

It is necessary to point out that the methods mentioned in this paper are exact. Any
errors are caused by the difference between the true distribution of flexural stiffness or axial
loads and that determined by eqns (9) or (21). So, if a bar has continuously varying
distribution or multi-step-varying distribution of flexural stiffness and axial loads, the
calculation results will be exact or very close to the exact values.

CONCLUSION

(I) The proposed method and functions describing flexural stiffness and axial loads
are not only suitable for stability analysis of bars with varying cross section subjected to
variably distributed axial loads, but also for bars with multi-step-varying distribution of
flexural stiffness and axial loads.

(2) The special cases, including most of the problems discussed by Timoshenko (1961),
Timoshenko (1930), Genik (1950), Jasinsky (1902), Karman and Biot (1940), Vaziri and
Xie (1992) and Arbari and Li (1991) and in other previous stability literature, can be found
from the general solution proposed in this paper.
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